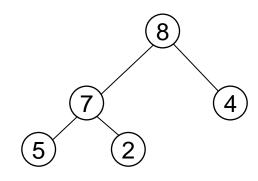
The Heap Data Structure

- *Def*: A heap is a <u>nearly complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node x

 $Parent(x) \ge x$



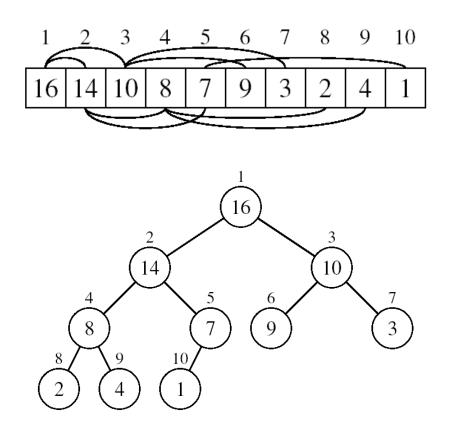
Heap

From the heap property, it follows that: "The root is the maximum element of the heap!"

A heap is a binary tree that is filled in order

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Heapsize[A] ≤ length[A]
- The elements in the subarray A[(_n/2_+1) .. n] are leaves



Heap Types

• Max-heaps (largest element at root), have the max-heap property:

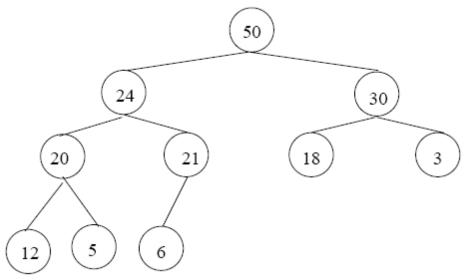
– for all nodes i, excluding the root:
A[PARENT(i)] ≥ A[i]

- Min-heaps (smallest element at root), have the *min-heap property:*
 - for all nodes i, excluding the root:

 $A[PARENT(i)] \le A[i]$

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level (right to left)

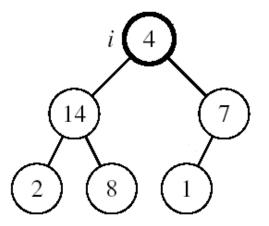


Operations on Heaps

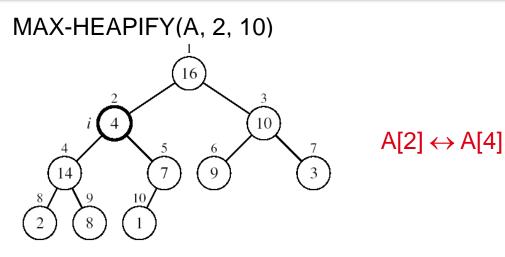
- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT
- Priority queues

Maintaining the Heap Property

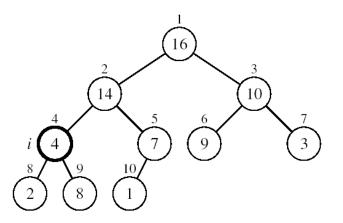
- Suppose a node is smaller than a child
 - Left and Right subtrees of i are max-heaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children



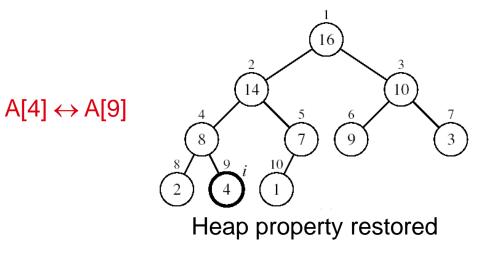
Example



A[2] violates the heap property

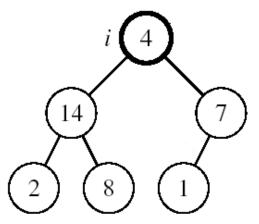


A[4] violates the heap property



Maintaining the Heap Property

- Assumptions:
 - Left and Right subtrees of i are max-heaps
 - A[i] may be smaller than its children



Alg: MAX-HEAPIFY(A, i, n)

- 1. $I \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- 3. if $I \le n$ and A[I] > A[i]
- 4. **then** largest \leftarrow l
- 5. else largest ←i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. **then** largest \leftarrow r
- 8. if largest ≠ i
- 9. then exchange $A[i] \leftrightarrow A[largest]$ 10. MAX-HEAPIFY(A, largest, n)

MAX-HEAPIFY Running Time

- Intuitively:
 - It traces a path from the root to a leaf (longest path length: h)
 At each level, it makes exactly 2 comparisons

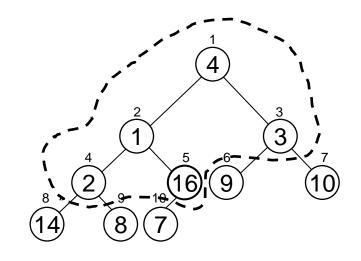
 - Total number of comparisons is 2h
 - Running time is O(h) or O(lgn)
- Running time of MAX-HEAPIFY is O(Iqn)
- Can be written in terms of the height of the heap, as being O(h)
 - Since the height of the heap is $\lfloor Ign \rfloor$

Building a Heap

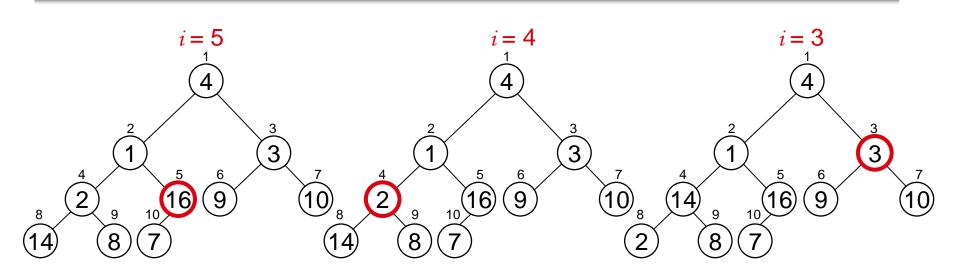
- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) \dots n]$ are leaves
- Apply MAX-HEAPIFY on elements between 1 and [n/2]

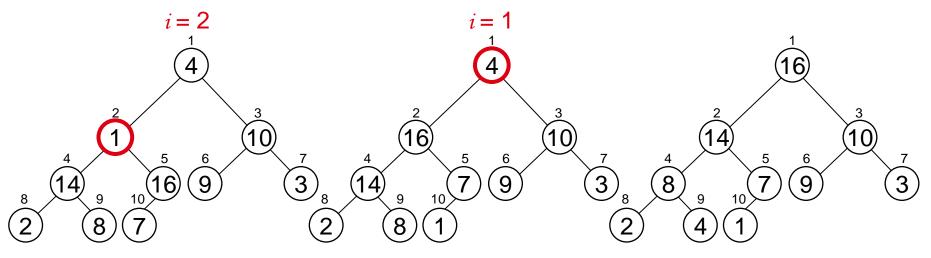
Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)



Example:





Running Time of BUILD MAX HEAP

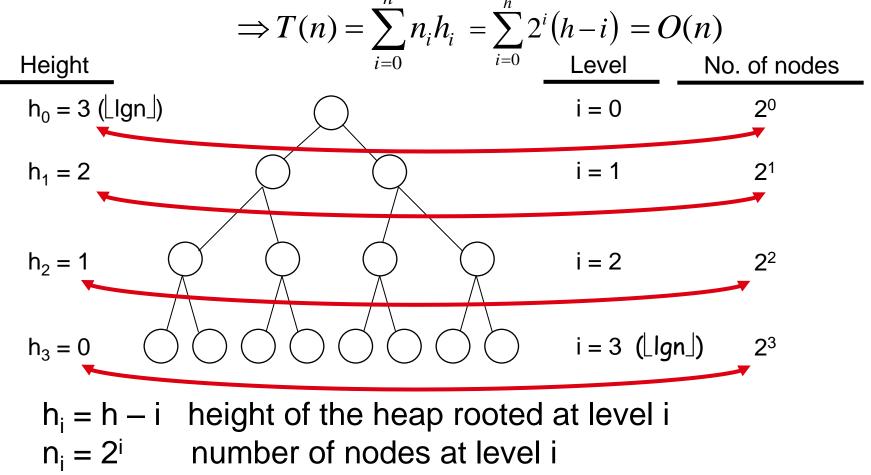
- Alg: BUILD-MAX-HEAP(A)
- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)

```
O(lgn) O(n)
```

- ⇒ Running time: O(nlgn)
- This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

 HEAPIFY takes O(h) ⇒ the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree



Running Time of BUILD MAX HEAP

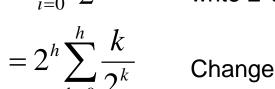
Cost of HEAPIFY at level i * number of nodes at that level

$$=\sum_{i=0}^{h}2^{i}(h-i)$$

 $T(n) = \sum_{i=1}^{n} n_i h_i$

Replace the values of n_i and h_i computed before

$$=\sum_{i=0}^{h}\frac{h-i}{2^{h-i}}2^{h}$$



Multiply by 2^h both at the nominator and denominator and write 2ⁱ as $\frac{1}{2^{-i}}$

Change variables: k = h - i



= O(n)

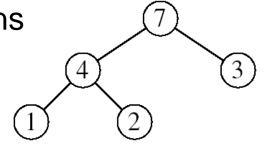
The sum above is smaller than the sum of all elements to ∞ and h = lgn

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

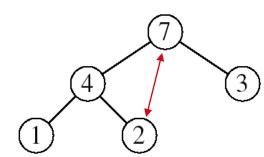
Heapsort

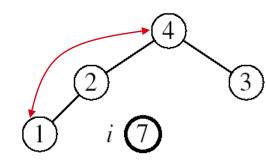
- Goal:
 - Sort an array using heap representations
- Idea:
 - Build a max-heap from the array

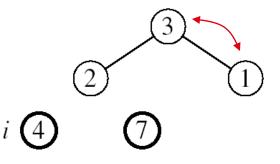


- Swap the root (the maximum element) with the last element in the array
- "Discard" this last node by decreasing the heap size
- Call MAX-HEAPIFY on the new root
- Repeat this process until only one node remains

A=[7, 4, 3, 1, 2]



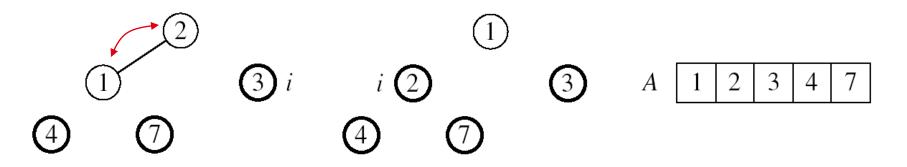




MAX-HEAPIFY(A, 1, 4)

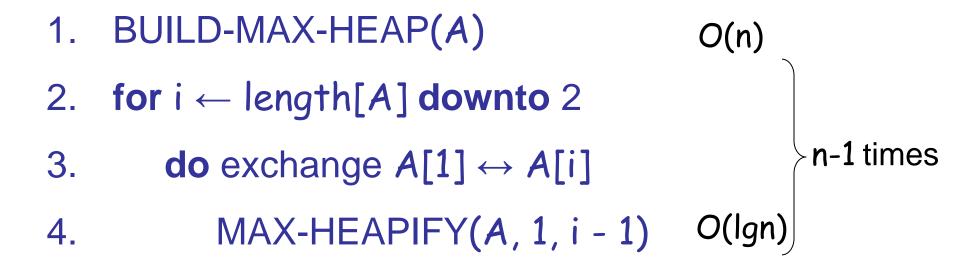
MAX-HEAPIFY(A, 1, 3)

MAX-HEAPIFY(A, 1, 2)



MAX-HEAPIFY(A, 1, 1)

Alg: HEAPSORT(A)

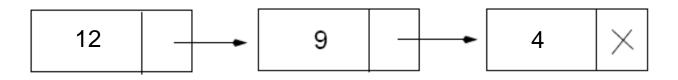


 Running time: O(nlgn) --- Can be shown to be Θ(nlgn)

Priority Queues

Properties

- Each element is associated with a value (priority)
- The key with the highest (or lowest) priority is extracted first



Operations on Priority Queues

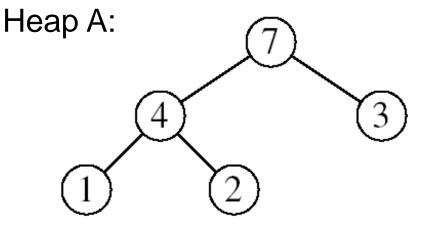
- Max-priority queues support the following operations:
 - INSERT(S, x): inserts element x into set S
 - EXTRACT-MAX(S): removes and returns element of
 - S with largest key
 - MAXIMUM(S): returns element of S with largest key
 - INCREASE-KEY(S, x, k): increases value of element
 x's key to k (Assume k ≥ x's current key value)

HEAP-MAXIMUM

Goal:

Return the largest element of the heap

```
Alg: HEAP-MAXIMUM(A)
1. return A[1]
```



Heap-Maximum(A) returns 7

Running time: O(1)

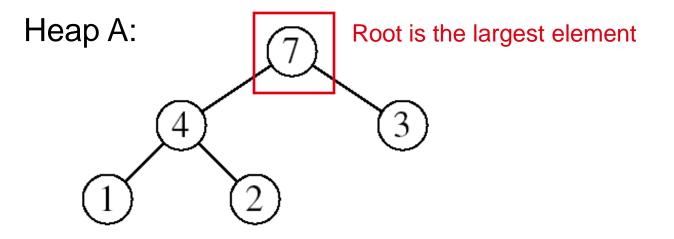
HEAP-EXTRACT-MAX

Goal:

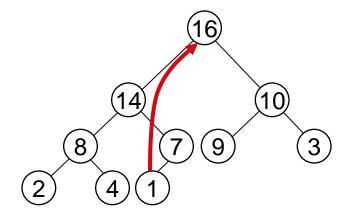
Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

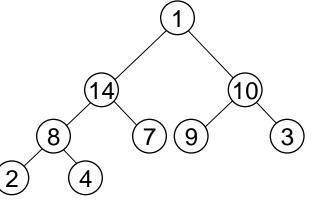
- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1



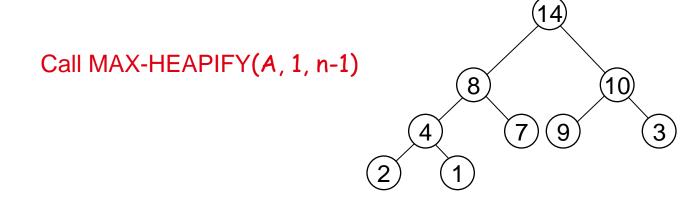
Example: HEAP-EXTRACT-MAX



max = 16



Heap size decreased with 1



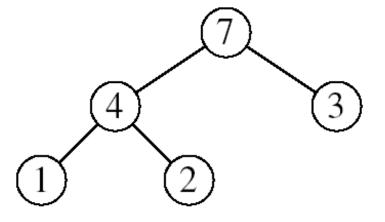
HEAP-EXTRACT-MAX

- Alg: HEAP-EXTRACT-MAX(A, n)
- 1. if n < 1
- 2. then error "heap underflow"
- 3. max $\leftarrow A[1]$
- 4. $A[1] \leftarrow A[n]$
- 5. MAX-HEAPIFY(A, 1, n-1)

▷ remakes heap

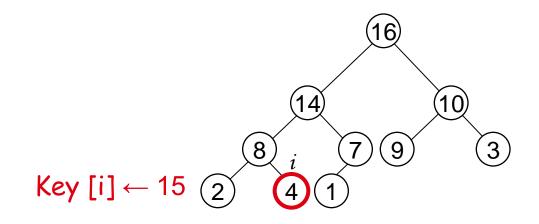
6. return max

Running time: O(lgn)

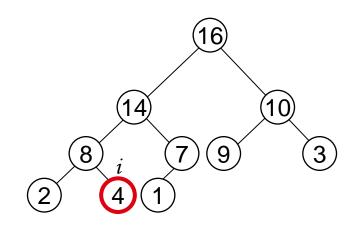


HEAP-INCREASE-KEY

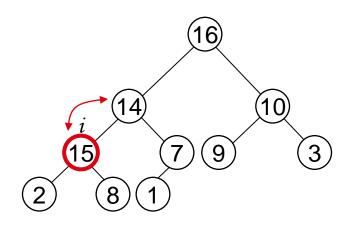
- Goal:
 - Increases the key of an element i in the heap
- Idea:
 - Increment the key of A[i] to its new value
 - If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

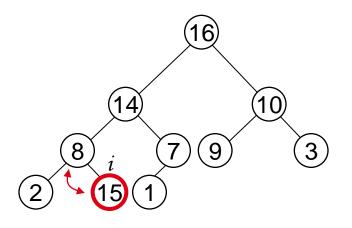


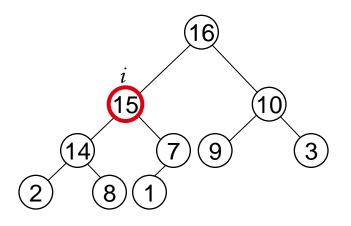
Example: HEAP-INCREASE-KEY



 $\mathcal{K}ey[i] \leftarrow 15$







HEAP-INCREASE-KEY

- Alg: HEAP-INCREASE-KEY(A, i, key)
- 1. **if** key < A[i]
- 2. then error "new key is smaller than current key"
- 3. $A[i] \leftarrow key$
- 4. while i > 1 and A[PARENT(i)] < A[i]
- 5. **do** exchange $A[i] \leftrightarrow A[PARENT(i)]$
- 6. $i \leftarrow PARENT(i)$
- Running time: O(lgn)

10)

3

16)

9

Key [i] ← 15

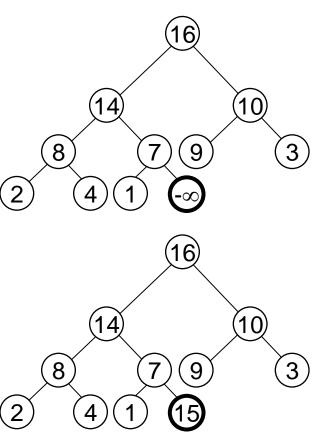
14

8

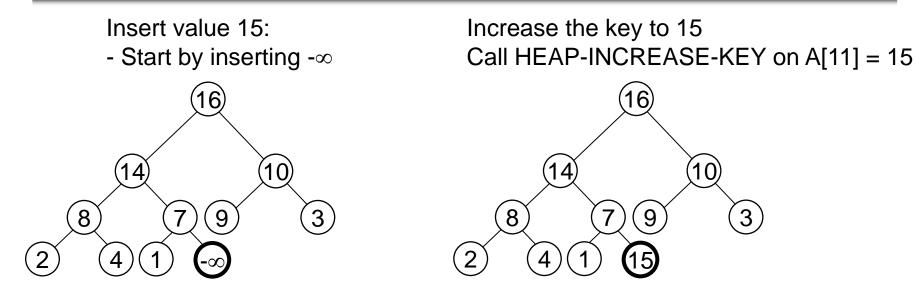
2

MAX-HEAP-INSERT

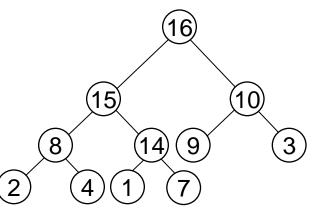
- Goal:
 - Inserts a new element into a maxheap
- Idea:
 - Expand the max-heap with a new element whose key is $-\infty$
 - Calls HEAP-INCREASE-KEY to set the key of the new node to its correct value and maintain the max-heap property

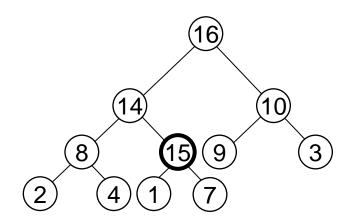


Example: MAX-HEAP-INSERT

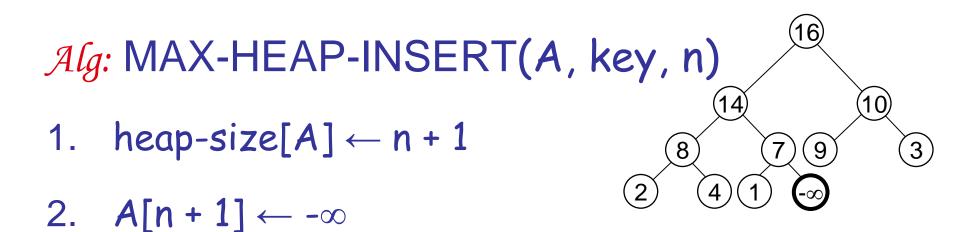


The restored heap containing the newly added element





MAX-HEAP-INSERT



3. HEAP-INCREASE-KEY(A, n + 1, key)

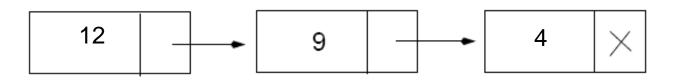
Running time: O(lgn)

Summary

- We can perform the following operations on heaps:
 - MAX-HEAPIFY
 - BUILD-MAX-HEAP
 - HEAP-SORT
 - MAX-HEAP-INSERT
 - HEAP-EXTRACT-MAX
 - HEAP-INCREASE-KEY
 - HEAP-MAXIMUM

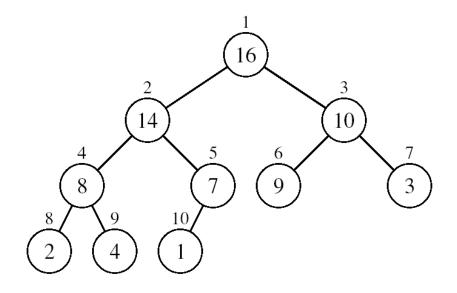
O(lgn) O(n)O(nlgn) O(lgn) O(lgn) Average O(lgn) O(lgn) **O(1)**

Priority Queue Using Linked List



Remove a key: O(1) Insert a key: O(n) Increase key: O(n) Extract max key: O(1)

Assuming the data in a max-heap are distinct, what are the possible locations of the second-largest element?



(a) What is the maximum number of nodes in a max heap of height h?

(b) What is the maximum number of leaves?

(c) What is the maximum number of internal nodes?

 Demonstrate, step by step, the operation of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]

- Let A be a heap of size n. Give the most efficient algorithm for the following tasks:
- (a) Find the sum of all elements

(b) Find the sum of the largest Ign elements